Skip to main content
Trigonometry formulas š
- Sin x = opposite side Ć· hypotenuse
- Cos x = Adjacent side Ć· hypotenuse
- Tan x = opposite side Ć· adjacent side
- Cot x = Adjacent side Ć· opposite side
- Sec x = hypotenuse Ć· opposite side
- Cosec x= hypotenus Ć· adjacent side
- Sin x Ć Cosec x = 1
- Sin x = 1 Ć· cosec x
- Cosec x = 1 Ć· sin x
- Cos x Ć sec x = 1
- Cos x = 1 Ć· sec x
- Sec x = 1 Ć· cos x
- SinĀ² x + cosĀ² x = 1
- Cos x + tan x = 1
- 1 + cot x = cosecĀ²x
- Sin(A +B) = sinA.cosB + cosA.sinB
- Sin(A-B) = sinA.cosB - cosA.sinB
- Cos(A+B) = cosA.cosB - sinA.sinB
- Cos(A-B) = cosA.cosB + sinA.sinB
- Tan(A+B) = tanA + tanB Ć· 1- tanA.tanB
- Tan(A-B) = tanA - tanB Ć· 1+ tanA.tanB
- Sin2x = 2sinx.cosx
- Sin2x = 2tanx Ć· 1+ tanĀ²x
- Cos2x = cosĀ²x - sinĀ²x
- Cos2x = 1 - 2sinĀ²x
- Cos2x = 2cosĀ²x - 1
- Tan2x = 2tanx Ć· 1- tanĀ²x
- Sin3x = 3sinx - 4sinĀ³x
- Cos3x = 4cosĀ³x - 3cosx
- Tan3x = 3tanx - tanĀ³x Ć· 1- 3tanĀ²x
- 1 + cos2x = 2cosĀ²x
- 1 - cos2x = 2sinĀ²x
- SinC + sinD = 2sin(C+D Ć· 2). Cos( C - D Ć· 2)
- SinC - sinD = 2cos(C+D Ć· 2). Sin( C - D Ć· 2)
- CosC + cosD = 2cos(C+D Ć· 2). Cos( C - D Ć· 2)
- CosC - cosD = -2sin(C+D Ć· 2).sin( C - D Ć· 2)
- 2sinA.cosB = sin(A+B) + sin(A-B)
- 2cosA.sinB = sin(A+B) - sin(A-B)
- 2cosA.cosB = cos(A+B) + cos(A-B)
- 2sinA.sinB = cos(A-B) - cos(A+B)


Comments
Post a Comment